

MARINA DEL REY HARBOR: WATER EFFECT RATIO (WER) STUDY

MIACC Meeting June 22, 2021 Ashley N. Parks, PhD Southern California Coastal Water Research Project

TODAY'S PRESENTATION

- Study Objectives
- WER Sampling and Testing Design
- Study Results
 - Summary of findings
 - Sample WERs

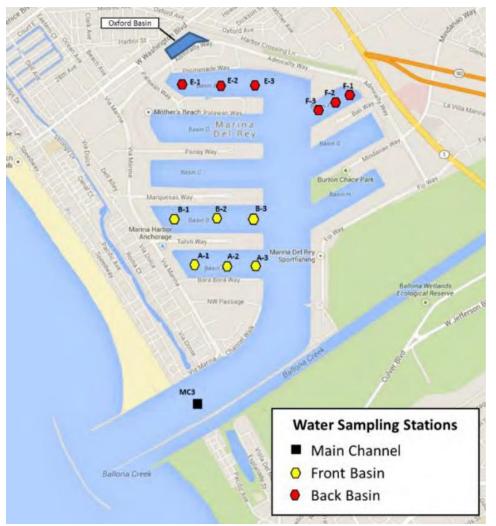
TOXICS/COPPER TMDL

- 2014 TMDL Revisions included a finding of copper impairment in the water column
 - Established load allocation for copper in the water column
 - Dissolved copper target of 3.1 μg/L
- To meet the TMDL target, there must be an 85% reduction of copper leaching from boat hull paints by 2024
 - Minor inputs of Cu from other sources
- A site-specific objective study was approved

STUDY OBJECTIVES

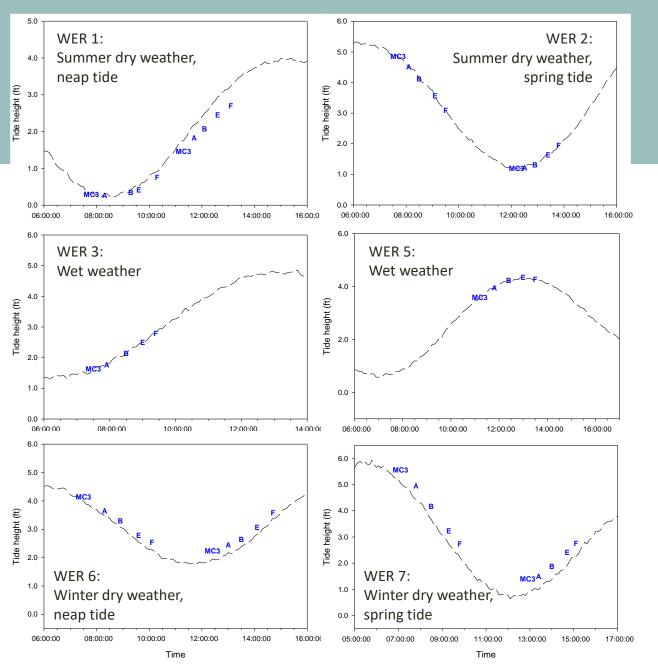
- Characterize variability of key water quality parameters in MdRH
 - Dissolved copper
 - DOC
- Generate a Water Effects Ratio (WER) using up to six sampling events under varying water quality conditions
 - Winter and summer dry weather
 - Wet weather
 - Spring and neap tidal cycles

TODAY'S PRESENTATION


- Study Objectives
- WER Sampling and Testing Design
- Study Results
 - Summary of findings
 - Sample WERs

SAMPLING EVENTS

WER sampling	Tide Type		Summer	Winter		
			Dry Weather	Dry Weather	Wet Weather	
	Spring	Neap	April – October	November – March	November – March	
#1		Х	Х			
#2	X		X			
#6		X		X		
#7	X			X		
#3	NA	NA			Х	
#5	NA	NA			X	

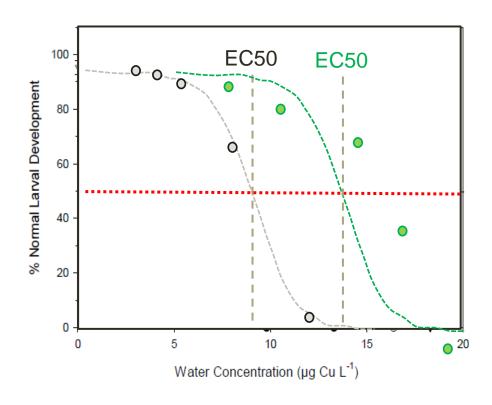

SAMPLING LOCATIONS

- 5 stations were selected to represent spatial variability within harbor
 - Spatial composites of each basin
 - Tidal composites (ebb and flood) for dry weather events

SAMPLING EVENTS: TIDAL CYCLES

- For wet weather events, each station was sampled once
- For dry weather events, each location was sampled at flood and ebb tides and further composited for one sample per station

PARAMETERS ANALYZED


	Occasion of Measurement			
Analyte	Field	Laboratory		
рН	Χ	X		
Temperature	Χ	X		
Salinity	Χ	X		
Dissolved Oxygen	Χ	X		
Dissolved Organic Carbon		X		
Total and Dissolved Copper		X		
Total and Dissolved Zinc		X		
Toxicity		X		

- Dose-response toxicity tests performed on water samples
 - Copper added to create a range of concentrations from 0-23 µg/L

WATER EFFECT RATIO (WER) CALCULATION

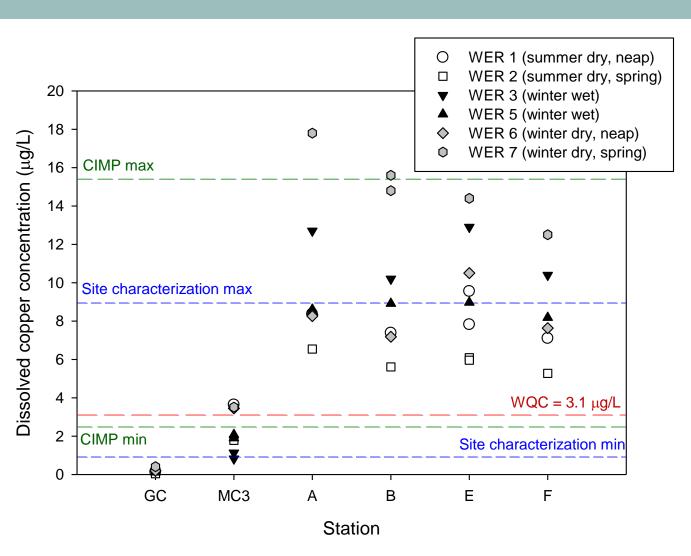
- EPA-recommended method to develop site-specific aquatic life criteria
 - Compares toxicity of metal in site water to reference water

WER = <u>Site Water EC50</u> Reference Water EC50

EC50 = Toxicant concentration causing 50% effect

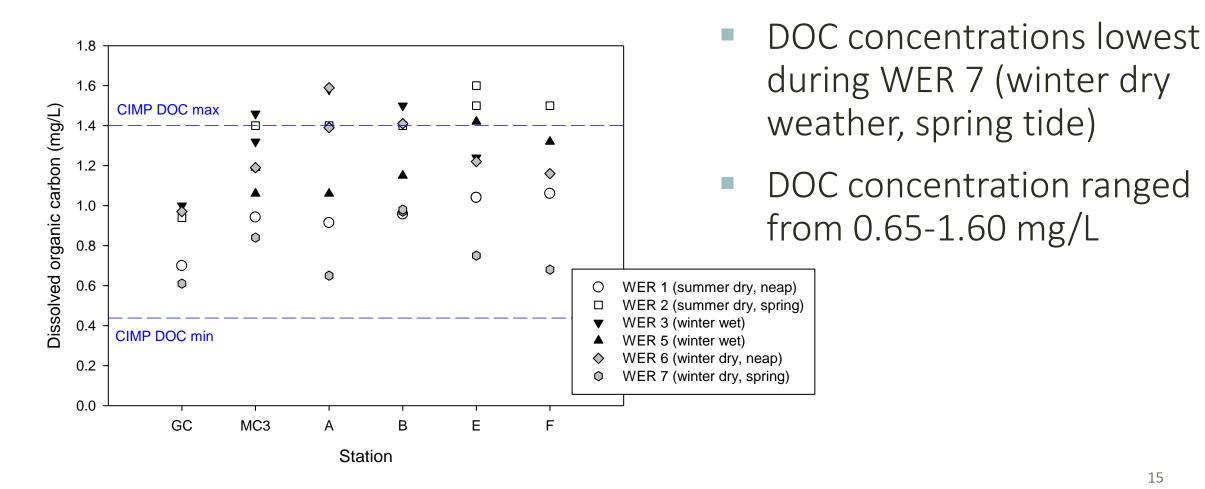
WER INTERPRETATION

- WER = 1
 - Water quality objective accurate with respect to site conditions
- WER > 1
 - Site conditions reduce toxic potency
- WER < 1</p>
 - Site conditions increase toxic potency
- WER can be used to develop a site-specific objective (SSO)
 - SSO = Criterion x WER


TODAY'S PRESENTATION

- Study Objectives
- WER Sampling and Testing Design
- Study Results
 - Summary of findings
 - Sample WERs

STUDY FINDINGS


- Dissolved copper concentrations frequently exceeded current water quality objective (>3.1 μg/L)
- DOC concentrations lowest in winter dry weather with spring tide
- Toxicity-based Water Effects Ratios suggest possible reduced copper bioavailability relative to reference water (WER > 1)
 - Dependent on season and weather
- WERs higher in wet weather > summer dry weather > winter dry weather
 - Suggests greater copper bioavailability during winter dry weather

WER SAMPLING SUMMARY: DISSOLVED COPPER

- Lowest MdRH copper concentrations are at Main Channel station
- Highest MdRH copper concentrations are at basin stations
 - WER 7 event had highest copper concentrations
 - WER 2 had lowest copper concentrations

WER SAMPLING SUMMARY: DISSOLVED ORGANIC CARBON CONCENTRATION

TOXICITY-BASED WATER EFFECT RATIOS

	Laboratory Toxicity Test Results							
Station	WER 1 (summer dry, neap)	WER 2 (summer dry, spring)	WER 3 (wet)	WER 5 (wet)	WER 6 (winter dry, neap)	WER 7 (winter dry, spring)	All Events	
MdRH-MC3	1.28	1.33		1.62 (mean)	1.00	1.27		
MdRH-A	1.30	1.35	1.54	1.72	0.925 (mean)			
MdRH-B	1.34	1.35	1.59	1.76	1.01			
MdRH-E	1.28 (mean)	1.44 (mean)	1.59	1.94				
MdRH-F	1.36	1.44	1.57	2.04	1.09			
Geometric mean	1.31	1.38	1.57	1.81	1.00		1.40	

- Lowest WERs in winter dry weather
 - Assumed highest copper bioavailability
- Dry weather WERs range:
 - 0.925 1.44
- Wet weather WERs range:
 - 1.54 2.04

FINAL WER

- MdRH SSO Study final WER calculation is based on the toxicity test results
 - Geometric mean
 - All 24 sample WERs
 - fWER = 1.40
- An fWER > 1 indicates site conditions reduce toxic potency of copper

QUESTIONS?